
Elgersburg Lectures – March 2010

Lecture I

MODELS and BEHAVIORS
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Theme

FAQ: How should we think of a ‘mathematical model’,
in the sense of: as a mathematicalconcept?
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Theme

FAQ: How should we think of a ‘mathematical model’,
in the sense of: as a mathematicalconcept?

Answer: As a subset of a universum of possible events.

This subset = the outcomes which the model allows,
= the behavior.

The aim of this lecture is to develop this mathematical
formalism, with the behavior as the central concept.
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Outline

◮ Mathematical models

◮ The universum and the behavior

◮ Dynamical systems

◮ Properties of dynamical systems

◮ Linear time-invariant differential systems (LTIDSs):
systems described by linear constant-coefficient ODEs

◮ Other sets of independent variables
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Mathematical models
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Modeling

Assume that we have a ‘real’ phenomenon.

The phenomenon produces‘events’ (synonym: ‘outcomes’).

Phenomenon

Event, outcome   
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Modeling

Assume that we have a ‘real’ phenomenon.

The phenomenon produces‘events’ (synonym: ‘outcomes’).

Phenomenon

Event, outcome   

We view a deterministic model for the phenomenon as a
prescription of which events can occur,

and which events cannot occur.
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The universum and the behavior
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The universum and the behavior

The events are described in the language of mathematics by
answering

to which set do the (unmodelled) events belong?

The universum of events that are - in principle - possible
is called the ‘universum’, and is denoted byU .
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The universum and the behavior

The events are described in the language of mathematics by
answering

to which set do the (unmodelled) events belong?

The universum of events that are - in principle - possible
is called the ‘universum’, and is denoted byU .

Assume that, after studying the situation, the conclusion is
reached that the events are constrained, that some laws are in
force. Expressing this restriction leads to a ‘model’.
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The universum and the behavior

The events are described in the language of mathematics by
answering

to which set do the (unmodelled) events belong?

The universum of events that are - in principle - possible
is called the ‘universum’, and is denoted byU .

Assume that, after studying the situation, the conclusion is
reached that the events are constrained, that some laws are in
force. Expressing this restriction leads to a ‘model’.

Modeling therefore means that certain events are declared
impossible, that they cannot occur.

The possibilities that remain constitute the ‘behavior’ of the
model, and is denoted byB.
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The behavior

A mathematical model:⇔ a pair (U ,B)
with

U the universum of events

B ⊆ U the behavior of the model

allowed   

possible   

forbidden   

U

B
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Examples
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Discrete event phenomena

If U is a finite set, or strings of elements from a finite set,
we speak aboutdiscrete event systems (DESs).

Phenomenon

Examples:

◮ Words in a natural language

◮ Sentences in a natural language

◮ DNA sequences

◮ LATEX code
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Discrete event phenomena

◮ Words in a natural language

U = A∗ (:= all finite strings with letters from A)
with A = {a, . . . ,z,A, . . . ,Z}.

B = all words recognized by the spelling checker,
for example, behavior∈ B, SPQR /∈ B.

B is basically specified by enumeration.
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Discrete event phenomena

◮ Words in a natural language

U = A∗ (:= all finite strings with letters from A)
with A = {a, . . . ,z,A, . . . ,Z}.

B = all words recognized by the spelling checker,
for example, behavior∈ B, SPQR /∈ B.

B is basically specified by enumeration.

◮ Sentences in a natural language

U = A∗ (:= all finite strings with letters from A)
with A = {a, . . . ,z,A, . . . ,Z, , .; : ‘” ′− ()!?, etc.}.

B = all legal sentences.
SpecifyingB is a complicated matter, involving grammars.
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Discrete event phenomena

◮ DNA sequences

A = {A,G,C,T}, U = A
∗, B =???

◮ LATEXcode

B = all LATEXfiles that ‘compile’.
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Continuous phenomena

If U is a (subset of) a finite-dimensional real (or complex)
vector space, we speak aboutcontinuous models.

Phenomenon

Examples:

◮ The gas law

◮ A spring

◮ The gravitational attraction of two bodies

◮ A resistor
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Continuous phenomena

◮ The gas law

Event: pressure, volume, temperature, quantity
of a gas in a vessel.

(pressure, volume,    
temperature, quantity)      

Gas

Benôıt Clapeyron
1799–1864

U = [0,∞)4; B = {(P,V,T,N) ∈ [0,∞)4 | PV = NT }.

Occasionally in these lectures, we assume that the units arechosen so that certain
constants, as the proportionality constant in this example, are equal to one.
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Continuous phenomena

◮ A spring

Event: (force F1, force F2, length L).

L

F1 F2

L

F1

U = R×R× [0,∞);

B = {(F1,F2,L) ∈ R×R× [0,∞) | F1 = F2,L = ρ(F1) }.
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Continuous phenomena

◮ The gravitational attraction of two bodies
Occasionally in these lectures, we assume that the units arechosen so that certain
constants, as the universal gravitational constant in thisexample, are equal to one.

Event: (position~q1, position~q2, force ~F).

~q1 ~q2

~F

M1
M2

Isaac Newton (1643–1727)

U = R3×R3×R3;

B =

{

(~q1,~q2,~F) ∈ R
3×R

3×R
3 | ~F =

M1M2~1(~q2−~q1)

|~q1−~q2|2

}

.
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Continuous phenomena

◮ A resistor

Event: (voltageV , current I).
Throughout, we take the current positive when it runsinto the circuit,
and we take the voltage positive when it goesfrom higher to lowerpotential.

+

–

I

VR

Georg Ohm
(1789–1854)

U = R×R

B = {(V, I) ∈ R×R | V = RI } (Ohm’s law)
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Dynamical phenomena

If U is a set of functions of time, we speak about
dynamical models.

Phenomenon

time

signal space

Examples:

◮ Inductors, capacitors

◮ Kepler’s laws

◮ Newton’s second law
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Dynamical phenomena

◮ Inductors and capacitors

Event: voltage and current as a function of time.

+

–

I

VL

+

–

I

VC

U = (R×R)R;

B = {(V, I) : R → R×R | L d
dt I = V } (inductor),

B = {(V, I) : R → R×R | C d
dtV = I } (capacitor).
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Dynamical phenomena

◮ Kepler’s laws

Event: the position of a planet as a function of time.

PLANET

7 months

1 year

SUN

K1: ellipse, sun in focus,
K2: equal areas in equal times,
K3: square of the period

= third power of major axis

Johannes Kepler
(1571–1630)

U = (R3)R;
B = {~q : R → R

3 | K1, K2, & K3 hold }.
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Dynamical phenomena

◮ Newton’s second law

Event: the position of a pointmass and the force acting
on it, both as a function of time.

M
~q

~F

Newton painted by William Blake
U = (R3×R3)R;

B = {(~q,~F) : R → R3×R3 | ~F = M d2

dt2~q }.
– p. 12/60



Distributed phenomena

If U is a set of functions of space and time, we speak about
distributed parameter systems.
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Phenomenon

time

space

space

Examples:

◮ Heat diffusion

◮ Maxwell’s equations
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Distributed phenomena

◮ Heat diffusion

Event: temperature and heat flow
as a function of time and space.
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Q(x, t)

T (x, t)x

U = ([0,∞)×R)R2
;

B =

{

(T,Q) : R2 → [0,∞)×R | ∂
∂ t T = ∂ 2

∂ x2 T +Q

}

.
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Distributed phenomena

◮ Maxwell’s equations

Event: electric field, magnetic field, current density,
charge density as a function of time and space.

∇ ·~E =
1
ε0

ρ ,

∇×~E = −
∂
∂ t

~B,

∇ ·~B = 0 ,

c2∇×~B =
1
ε0

~j +
∂
∂ t

~E.
James Clerk Maxwell

(1831–1879)

U = (R3×R3×R3×R)R
4
;

B = {(~E,~B,~j,ρ) : R×R3 → R3×R3×R3×R

| Maxwell’s equations are satisfied}.
– p. 13/60



The behavior
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Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.
Equivalence of models, properties of models,

symmetries, system identification, etc.
must all refer to the behavior.
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Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is.
Equivalence of models, properties of models,

symmetries, system identification, etc.
must all refer to the behavior.

Every ‘good’ scientific theory is prohibition:
it forbids certain things to happen.
The more it forbids, the better it is.

Karl Popper (1902-1994)

Replace ‘scientific theory’ by ‘mathematical model’.
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Dynamical systems
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The dynamic behavior

In dynamical systems, the ‘events’ are maps, with the
time-axis as domain. The events are functions of time.

Phenomenon

time

signal space
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The dynamic behavior

In dynamical systems, the ‘events’ are maps, with the
time-axis as domain. The events are functions of time.

Phenomenon

time

signal space

It is convenient to distinguish, in the notation,
the domain of the event maps, thetime set,

and the codomain, thesignal space,
that is, the set where the functions take on their values.
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The dynamic behavior

Definition: A dynamical system:⇔ (T,W,B) , with

◮ T ⊆ R the time set,

◮ W the signal space,

◮ B ⊆ (W)T the behavior,
that is, B is a family of maps from T to W.

w : T → W ∈ B means: the model allows the trajectoryw,

w : T → W /∈ B means: the model forbids the trajectory w.
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The dynamic behavior

Definition: A dynamical system:⇔ (T,W,B) , with

◮ T ⊆ R the time set,

◮ W the signal space,

◮ B ⊆ (W)T the behavior,
that is, B is a family of maps from T to W.

w : T → W ∈ B means: the model allows the trajectoryw,

w : T → W /∈ B means: the model forbids the trajectory w.

Mostly, T = R,R+ := [0,∞),Z, or N := {0,1,2, . . .},
W = (a subset of)Rw, for somew ∈ N,

B is then a family of trajectories taking values
in a finite-dimensional real vector space.

T = R or R+ ; ‘continuous-time’ systems,
T = Z or N ; ‘discrete-time’ systems.
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Dynamical systems described by differential equations

Consider the ODE

f

(

w,
d
dt

w,
d2

dt2w, . . . ,
dn

dtn
w

)

= 0, (∗)
with

f : W×R
w×R

w×·· ·×R
w

︸ ︷︷ ︸

n times

→ R
•, W ⊆ R

w.

Some may prefer to write

f ◦

(

w,
d
dt

w,
d2

dt2w, . . . ,
dn

dtn
w

)

= 0,

instead of (∗), but we leave the◦ notation to puritans.
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Dynamical systems described by differential equations

Consider the ODE

f

(

w,
d
dt

w,
d2

dt2w, . . . ,
dn

dtn
w

)

= 0, (∗)
with

f : W×R
w×R

w×·· ·×R
w

︸ ︷︷ ︸

n times

→ R
•, W ⊆ R

w.

This ODE defines the dynamical system(R,W,B), with

B = {w : R → W,sufficiently smooth|

f

(

w(t),
d
dt

w(t),
d2

dt2w(t), . . . ,
dn

dtn
w(t)

)

= 0 ∀ t ∈ R}.

‘Sufficiently smooth’: for example C ∞(R,W),
but other solution concepts may be appropriate ...
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Examples

◮ Inductor: W = R2, f : (V, I, d
dtV, d

dt I) 7→V −L d
dt I.

◮ Capacitor: W = R
2, f : (V, I, d

dtV, d
dt I) 7→C d

dtV − I.

◮ Newton’s second law:

W = R
3×R

3,

f : (~F ,~q, d
dt

~F , d
dt~q, d2

dt2
~F , d2

dt2~q) 7→ ~F −M d2

dt2~q.
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Properties of dynamical systems
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Linearity and time-invariance

The dynamical systemΣ = (T,W,B) is said to be

linear :⇔
W is a vector space (over the fieldF) and
[[w1,w2 ∈ B and α ∈ F]] ⇒ [[w1 +αw2 ∈ B]].

Linearity ⇔ the ‘superposition principle’ holds.
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Linearity and time-invariance

The dynamical systemΣ = (T,W,B) is said to be

time-invariant :⇔ T = R,R+,Z, or N, and
[[w ∈ B and t ∈ T]] ⇒ [[σ tw ∈ B]].

σ t denotes thebackwards t-shift, defined as

σ tw : T → W, σ tw(t ′) := w(t ′ + t).

time

t

wσ tw

Shift-invariance ⇔ shifts of ‘legal’ trajectories are ‘legal’.
– p. 22/60



Autonomous systems

The dynamical systemΣ = (T,W,B), with T = R or Z, is said
to be

autonomous :⇔
[[w1,w2 ∈ B, and w1(t) = w2(t) for t < 0]] ⇒ [[w1 = w2]].
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Autonomous in a picture

time

time

FUTURE

PAST

W

W

autonomous :⇔ the past implies the future.
– p. 24/60



Stability

The dynamical systemΣ = (T,W,B), with T = R, [0,∞),
Z, or N, and W a normed vector space (for simplicity),
is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 for t → ∞]].
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Stability

The dynamical systemΣ = (T,W,B), with T = R, [0,∞),
Z, or N, and W a normed vector space (for simplicity),
is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 for t → ∞]].

In a picture

time

W

stability :⇔ all trajectories go to 0.

Sometimes this is referred to as ‘asymptotic stability’.
– p. 25/60



Controllability

The time-invariant (to avoid irrelevant complications)
dynamical systemΣ = (T,W,B), with T = R or Z, is said to
be

controllable :⇔
for all w1,w2 ∈ B, there exist
T ∈ T,T ≥ 0, and w ∈ B, such that

w(t) =

{

w1(t) for t < 0;
w2(t −T ) for t ≥ T.
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Controllability in a picture

time

W

0

w1

w2

w1,w2 ∈ B

transition 

w

time
T

WW

0

w1 ; w

σ−T w2 ; w

w ∈ B

controllability : ⇔ concatenability of trajectories after a delay
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Stabilizability

The dynamical systemΣ = (T,W,B), with T = R or Z, and W

a normed vector space (for simplicity), is said to be

stabilizable :⇔ for all w ∈ B, there existw′ ∈ B, such that

w′(t) = w(t) for t < 0,

and
w′(t) → 0 for t → ∞.
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Stabilizability in a picture

time

W

0

w ; w′

w′

stabilizability : ⇔ all trajectories can be steered to0.
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Observability

System  observed w1 w2 to-be-deduced

Consider the dynamical systemΣ = (T,W1×W2,B).

w2 is said to be observable fromw1 in Σ :⇔

[[(w1,w2),(w
′
1,w

′
2) ∈ B and w1 = w′

1]] ⇒ [[w2 = w′
2]].

observability :⇔ w2 may be deduced fromw1.

!!! Knowing the laws of the system !!!
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Observability in a picture

time

time

W1

W2

w1

w2

F

Equivalently, there exists a mapF : WT
1 → WT

2 , such that

[[(w1,w2) ∈ B]] ⇒ [[w2 = F(w1)]].
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Detectability

Consider the dynamical systemΣ = (T,W1×W2,B), with
T = R,R+,Z, or N, and W a normed vector space (for
simplicity).

w2 is said to be detectable fromw1 in Σ :⇔

[[(w1,w2),(w′
1,w

′
2) ∈ B and w1 = w′

1]]

⇒ [[w2(t)−w′
2(t) → 0 for t → ∞]].

Detectability :⇔ w2 can be asymptotically deduced fromw1.
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Examples

◮ All these properties will be discussed in detail for linear
time-invariant differential systems.

◮ Resistors, inductors, capacitors, Newton’s second law:
linear.

◮ All the examples given are time-invariant.

◮ Newton’s second law: controllable, hence stabilizable,
not stable,~F observable from~q,~q not observable and not
detectable from~F.

◮ Kepler’s laws define an autonomous system. So does

dn

dtn
w = f

(

w,
d
dt

w, . . . ,
dn−1

dtn−1w

)

.

In particular, d
dt x = f (x), and x(t +1) = f (x(t)).
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Representations of behaviors
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Kernels, images, and projections

A model B is a subset ofU .
There are many ways to specify a subset. For example,

◮ as the set of solutions of equations,

◮ as the image of a map,

◮ as a projection.

– p. 35/60



Kernels, images, and projections

A model B is a subset ofU .
There are many ways to specify a subset. For example,

◮ as the set of solutions of equations:

f : U →•, B = {w ∈ U | f (w) = 0},

◮ as the image of a map:

f : •→ U , B = {w ∈ U | ∃ ℓ such that w = f (ℓ) },

◮ as a projection:
Bextended⊆ U ×L ,

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended}.
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Kernels, images, and projections

A model B is a subset ofU .
There are many ways to specify a subset. For example,

◮ as solutions of equations: kernel representation

f : U →•, B = {w ∈ U | f (w) = 0},

◮ as the image of a map: image representation

f : •→ U , B = {w ∈ U | ∃ ℓ such that w = f (ℓ) },

◮ as a projection: latent variable representation

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended},

w’s ‘manifest’ variables: the variables the model aims at,
ℓ’s ‘latent’ variables: auxiliary variables.
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Kernel

◮ as solutions of equations: kernel representation

f : U →•, B = {w ∈ U | f (w) = 0}.

U

B
f

0
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Image

◮ as the image of a map: image representation

f : •→ U , B = {w ∈ U | ∃ ℓ such that w = f (ℓ) }.

U

B
f

– p. 37/60



Projection

◮ as a projection: latent variable representation

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended},

U

L

B

Bextended

projection

– p. 38/60



Latent variable representations

Combining equations with latent variables;

Bextended= {(w, ℓ) | f (w, ℓ) = 0},

B = {w | ∃ ℓ such that f (w, ℓ) = 0}.

w’s ‘manifest’ variables: the variables the model aims at,
ℓ’s ‘latent’ variables: auxiliary variables.

First principles models usually contain latent variables.
See Lecture III.

Latent variables naturally emerge from interconnections.
See Lecture IV.
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Latent variable representations

Combining equations with latent variables;

Bextended= {(w, ℓ) | f (w, ℓ) = 0},

B = {w | ∃ ℓ such that f (w, ℓ) = 0}.

w’s ‘manifest’ variables: the variables the model aims at,
ℓ’s ‘latent’ variables: auxiliary variables.

First principles models usually contain latent variables.
See Lecture III.

Latent variables naturally emerge from interconnections.
See Lecture IV.

FAQ: DoesB inherit the structure of Bextended?
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State models
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State equations

We now discuss how state models fit in.

d
dt

x = f (x,u), y = h(x,u), w =

[

u
y

]

, (♠)

with u : R → U the input , y : R → Y the output , and

x : R → X the state .

In particular, the linear case, these systems are parametrized
by the 4 matrices(A,B,C,D) ;

d
dt

x = Ax+Bu, y = Cx+Du, w =

[

u
y

]

,

with A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n,D ∈ R

p×m.
These models have dominated linear system theory since the
1960’s.
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State equations

We now discuss how state models fit in.

d
dt

x = f (x,u), y = h(x,u), w =

[

u
y

]

, (♠)

with u : R → U the input , y : R → Y the output , and

x : R → X the state .

It is common to view state space systems as models to describe
the input/output behavior by means of input/state/output
equations, with the state as latent variable. Define

Bextended:= {(u,y,x) : R → U×Y×X | (♠) holds},

B := {(u,y) : R → U×Y |∃ x : R → X such that (♠) holds}.
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State controllability

State models propagated
under the influence
of R.E. Kalman.
Especially important in this
development were the notions of
state controllability and
state observability.

Rudolf Kalman (1930– )
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State controllability

(♠) is said to be state controllable
if for all x1,x2 ∈ X, there existsT ≥ 0, u : R → U, and x : R → X

such that

1. d
dt x(t) = f (x(t),u(t)) for 0≤ t ≤ T ,

2. x(0) = x1,

3. x(T ) = x2.

x1

x2
X
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State controllability

(♠) is said to be state controllable
if for all x1,x2 ∈ X, there existsT ≥ 0, u : R → U, and x : R → X

such that

1. d
dt x(t) = f (x(t),u(t)) for 0≤ t ≤ T ,

2. x(0) = x1,

3. x(T ) = x2.

It is easy to prove that
[[state controllability ]]

⇔ [[behavioral controllability of Bextended]].
[[state controllability ]] ⇒ [[behavioral controllability of B]].

Behavioral controllability makes controllability into
a genuine, an intrinsic, system property.
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State observability

(♠) is said to be state observable if

[[(u,y,x1),(u,y,x2) ∈ Bextended]] ⇒ [[x1(0) = x2(0)]].
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It is easy to prove that
[[state observability]] ⇔ [[behavioral observability of Bextended]],
with (u,y) as ‘observed’ variables, andx as ‘to-be-deduced’
variable.

– p. 43/60



State observability

(♠) is said to be state observable if

[[(u,y,x1),(u,y,x2) ∈ Bextended]] ⇒ [[x1(0) = x2(0)]].

It is easy to prove that
[[state observability]] ⇔ [[behavioral observability of Bextended]],
with (u,y) as ‘observed’ variables, andx as ‘to-be-deduced’
variable.

Behavioral controllability and observability are meaningful
generalizations of state controllability and observability.

Why should we be so interested in the state?
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LTIDSs
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LTIDSs

The dynamical system(R,Rw,B) is said to be a

linear time-invariant differential system (LTIDS) :⇔

the behaviorB ⊆ (Rw)R consists of the set of solutions of a
system of linear constant-coefficient ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0,

with R0,R1, . . . ,Rn ∈ R
•×w real matrices that parametrize the

system, andw : R → R
w.
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LTIDSs

The dynamical system(R,Rw,B) is said to be a

linear time-invariant differential system (LTIDS) :⇔

the behaviorB ⊆ (Rw)R consists of the set of solutions of a
system of linear constant-coefficient ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0,

with R0,R1, . . . ,Rn ∈ R
•×w real matrices that parametrize the

system, andw : R → R
w. In polynomial matrix notation

R
(

d
dt

)
w = 0 ,

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w.
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Examples

◮ M d2

dt2~q = ~F,w =

[

~F
~q

]

, ; R(ξ ) =
[

I3×3
... −I3×3ξ 2

]

.

– p. 46/60



Examples

◮ M d2

dt2~q = ~F,w =

[

~F
~q

]

, ; R(ξ ) =
[

I3×3
... −I3×3ξ 2

]

.

◮
d
dt x = Ax+Bu, y = Cx+Du, w =






u
x
y




 ,

u : R → Rn,y : R → Rm,x : R → Rn.

; R(ξ ) =

[

A− In×nξ B 0
C D −Ip×p

]

.
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Examples

◮ M d2

dt2~q = ~F,w =

[

~F
~q

]

, ; R(ξ ) =
[

I3×3
... −I3×3ξ 2

]

.

◮
d
dt x = Ax+Bu, y = Cx+Du, w =






u
x
y




 ,

u : R → Rn,y : R → Rm,x : R → Rn.

; R(ξ ) =

[

A− In×nξ B 0
C D −Ip×p

]

.

◮ p0, p1, . . . , pn ∈ R,w : R → R

p0w+ p1
d
dt

w+ · · ·+ pn
dn

dtn
w = 0,

; R = p, with p(ξ ) = p0 + p1ξ + · · ·+ pnξ n.
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The solution set

We should define what we take to be the solution set.
For ease of exposition, we takeC ∞ (R,Rw) solutions. Hence

B = {w ∈ C ∞ (R,Rw) | R
(

d
dt

)
w = 0}.
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The solution set

We should define what we take to be the solution set.
For ease of exposition, we takeC ∞ (R,Rw) solutions. Hence

B = {w ∈ C ∞ (R,Rw) | R
(

d
dt

)
w = 0}.

There are other possibilities.

◮ Strong solutions : w as many times differentiable as

derivatives appear in the ODE, andR
(

d
dt

)
w = 0.

Has very few ‘invariance’ properties.

◮ Weak solutions : w ∈ L local(R,Rw), with R
(

d
dt

)
w = 0

in the sense of distributions. Includes steps, ramps, etc.

◮ Distributional solutions : w is a distribution,
and R

(
d
dt

)
w = 0 as a distribution.

Includes also impulses, doublets, and such frivolities.

Weak and distributional: very sensible alternatives toC ∞!
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Notation

B = kernel
(
R

(
d
dt

))
,

R
(

d
dt

)
w = 0: a kernel representation ofB.

We will meet other representations later.

C ∞ (R,Rw)

C ∞ (R,R•)

kernel
(
R

(
d
dt

))

R
(

d
dt

)

0
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Notation

B = kernel
(
R

(
d
dt

))
,

R
(

d
dt

)
w = 0: a kernel representation ofB.

C ∞ (R,Rw)

C ∞ (R,R•)

kernel
(
R

(
d
dt

))

R
(

d
dt

)

0

L w : the LTIDSs with w variables, B ∈ L w,

L • : the LTIDSs, B ∈ L •.
– p. 48/60



Other sets of independent variables
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Discrete-time systems

We have concentrated on continuous-time dynamical systems
with time set T = R. Notions like controllability and
stabilizability require appropriate changes for T = [0,∞), but
the development remains basically the same.

Discrete-time systems withT = N are often described by
difference equations

f (w,σw, . . . ,σnw) = 0,

leading to the behavior

B = {w : Z → W | f (w(t),w(t +1), . . . ,w(t +n) = 0 ∀ t ∈ N}.

In the caseT = Z, it is useful to have negative as well as
positive lags, leading to

f (σn−w,σn−+1w, . . . ,σn+−1w,σn+)w = 0.
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Systems described by constant-coefficient difference equations

The dynamical system(Z,Rw,B) is said to be a

linear time-invariant difference system :⇔

the behaviorB ⊆ (Rw)Z consists of the set of solutions of the
system of difference equations

Rn−σn−w+Rn−+1σn−+1w+ · · ·+Rn+σn+w = 0,

with Rn− ,Rn−+1, . . . ,Rn+ ∈ R•×w real matrices that
parametrize the system,n− ≤ n+ ∈ Z the minimal and
maximal lags, and w : Z → Rw.
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Systems described by constant-coefficient difference equations

The dynamical system(Z,Rw,B) is said to be a

linear time-invariant difference system :⇔

the behaviorB ⊆ (Rw)Z consists of the set of solutions of the
system of difference equations

Rn−σn−w+Rn−+1σn−+1w+ · · ·+Rn+σn+w = 0,

In polynomial matrix notation

R(σ ,σ−1)w = 0 ,

R(ξ ,ξ−1) = Rn−ξ n− +Rn−+1ξ n−+1 + · · ·+Rn+ξ n+ ∈ R [ξ ]•×w.

B = {w : Z → R
w | R(σ ,σ−1)w = 0}.
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MA

Example: The moving average system

w1(t) =
1

2N +1

N

∑
t ′=−N

w2(t + t ′)
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MA

Example: The moving average system

w1(t) =
1

2N +1

N

∑
t ′=−N

w2(t + t ′)

; w =

[

w1

w2

]

, and

R(ξ ,ξ−1) =

[

1
... −

1
2N +1

(
ξ−N + · · ·+1+ · · ·+ξ N)

]

.
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Completeness

It is undesirable to define system properties in terms of a
representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this
disadvantage. There is indeed a very nice characterizationof
discrete-time LTIDSs purely in terms of the behavior.
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Completeness

It is undesirable to define system properties in terms of a
representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this
disadvantage. There is indeed a very nice characterizationof
discrete-time LTIDSs purely in terms of the behavior.

The dynamical systemΣ = (T,W,B) is said to be

[[ complete]] :⇔ [[[[w ∈ B]] ⇔ [[w|[t1,t2] ∈ B|[t1,t2] ∀ t1, t2 ∈ T]]]].
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Completeness

It is undesirable to define system properties in terms of a
representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this
disadvantage. There is indeed a very nice characterizationof
discrete-time LTIDSs purely in terms of the behavior.

The dynamical systemΣ = (T,W,B) is said to be

[[ complete]] :⇔ [[[[w ∈ B]] ⇔ [[w|[t1,t2] ∈ B|[t1,t2] ∀ t1, t2 ∈ T]]]].

Examples: Systems described by differential
or difference equations.

Non-examples: B = L2(R : R
w), ℓ2(Z : R

w),

or behaviors involving compact support conditions.
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An intrinsic definition of LTI difference systems

Theorem

The following conditions are equivalent forΣ = (Z,Rw,B).

1. ∃ R ∈ R[ξ ,ξ−1] such thatB = kernel
(
R

(
σ ,σ−1

))
,

2. Σ is linear, time-invariant, and complete,

3. B is a linear, shift-invariant, closed (in the topology of
pointwise convergence) subspace of(Rw)Z.

What a ‘nice’ analogue of this theorem is for differential
equations is an open problem.
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Distributed systems

The notion of a dynamical systemΣ = (T,W,B) with T ⊆ R

can be generalized in a very meaningful way by considering a
general set of ‘independent’ variables forT.
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Distributed systems

The notion of a dynamical systemΣ = (T,W,B) with T ⊆ R

can be generalized in a very meaningful way by considering a
general set of ‘independent’ variables forT.

In particular, it is possible to capture this way distributed
parameter systems described by PDEs,

f

(

· · · ,
∂ k1∂ k2 · · ·∂ km

∂ k1+k2+···+km
w, · · ·

)

= 0.

This leads to a behavior that consists of mapsw : R
n → W.

For Maxwell’s equations, for example, we haveT = R
4, with

B consisting of all maps

(~E,~B,~j,ρ) : R
4 → R

3×R
3×R

3×R

that satisfy Maxwell’s PDEs.
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PDEs

The analogue of LTIDSs are systems described by linear
constant-coefficient PDEs. These behavioral equations canbe
written in terms of matrices of polynomials in many
variables.

AssumeT = R
n,W = R

w, then R ∈ R [ξ1,ξ2, . . . ,ξn]•×w leads to
the system of PDEs

R

(
∂

∂x1
, · · · ,

∂
∂xn

)

w = 0

This defines a systemΣ = (Rn,Rw,B) with

B = {w : R
n → R

w | R

(
∂

∂x1
, · · · ,

∂
∂xn

)

w = 0}.

Example: Maxwell’s equations (see Exercise I.6).
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Locally specified

Dynamical systems described by ODEs, in particular, LTIDSs
describe a behaviorB that is ‘locally specified’, meaning
that

[[w ∈ B]] ⇔ [[w[t−ε,t+ε] ∈ B[t−ε,t+ε] ∀ ε > 0 and t ∈ R]].

Thus the ‘legality’ of a trajectory can be verified by checking
if it is ‘locally’ legal.

A similar property holds for systems described by PDEs.

The analogue property for discrete-time systems is
completeness.
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Recapitulation
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Summary

◮ A phenomenon produces ‘events’, ‘outcomes’.
; the universum of eventsU .

◮ A mathematical modelspecifies a subsetB of U .
B is the behavior and specifies which events can occur,
according to the model.
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Summary

◮ A phenomenon produces ‘events’, ‘outcomes’.
; the universum of eventsU .

◮ A mathematical modelspecifies a subsetB of U .
B is the behavior and specifies which events can occur,
according to the model.

◮ In dynamical systems, the events are maps from the time
set to the signal space.

◮ Controllability, observability, and similar properties c an
be nicely defined within this setting.

◮ LTIDSs are described by linear constant-coefficient
differential equations. They can be represented in terms
of polynomial matrices.

◮ Discrete-time LTIDSs admit an elegant characterization
purely in terms of the behavior.
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End of Lecture I
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