Elgersburg Lectures - March 2010

Lecture I

MODELS and BEHAVIORS

FAQ: How should we think of a 'mathematical model', in the sense of: as a mathematical concept?

Theme

FAQ: How should we think of a 'mathematical model', in the sense of: as a mathematical concept?

Answer: As a subset of a universum of possible events.
This subset $=$ the outcomes which the model allows,
$=$ the behavior.

The aim of this lecture is to develop this mathematical formalism, with the behavior as the central concept.

Outline

Mathematical models
The universum and the behavior
Dynamical systems
Properties of dynamical systems
Linear time-invariant differential systems (LTIDSs): systems described by linear constant-coefficient ODEs
Other sets of independent variables

Mathematical models

Modeling

Assume that we have a 'real' phenomenon.
The phenomenon produces 'events' (synonym: 'outcomes').

Modeling

Assume that we have a 'real' phenomenon.
The phenomenon produces 'events' (synonym: 'outcomes').

We view a deterministic model for the phenomenon as a prescription of which events can occur,
and which events cannot occur.

The universum and the behavior

The events are described in the language of mathematics by answering
to which set do the (unmodelled) events belong?
The universum of events that are - in principle - possible is called the 'universum', and is denoted by \mathscr{U}.

The universum and the behavior

The events are described in the language of mathematics by answering
to which set do the (unmodelled) events belong?
The universum of events that are - in principle - possible is called the 'universum', and is denoted by \mathscr{U}.

Assume that, after studying the situation, the conclusion is reached that the events are constrained, that some laws are in force. Expressing this restriction leads to a 'model'.

The universum and the behavior

The events are described in the language of mathematics by answering
to which set do the (unmodelled) events belong?
The universum of events that are - in principle - possible is called the 'universum', and is denoted by \mathscr{U}.

Assume that, after studying the situation, the conclusion is reached that the events are constrained, that some laws are in force. Expressing this restriction leads to a 'model'.
Modeling therefore means that certain events are declared impossible, that they cannot occur.

The possibilities that remain constitute the 'behavior' of the model, and is denoted by \mathscr{B}.

The behavior

A mathematical model $: \Leftrightarrow$ a pair $(\mathscr{U}, \mathscr{B})$ with

\mathscr{U} the universum of events

$\mathscr{B} \subseteq \mathscr{U}$ the behavior of the model

Examples

Discrete event phenomena

If \mathscr{U} is a finite set, or strings of elements from a finite set, we speak about discrete event systems (DESs).

Examples:

- Words in a natural language

Sentences in a natural language
DNA sequences
IATEX code

Discrete event phenomena

Words in a natural language

$\mathscr{U}=\mathbb{A}^{*}(:=$ all finite strings with letters from $\mathbb{A})$ with $\mathbb{A}=\{a, \ldots, z, A, \ldots, Z\}$.
$\mathscr{B}=$ all words recognized by the spelling checker, for example, behavior $\in \mathscr{B}, \mathbf{S P Q R} \notin \mathscr{B}$.
\mathscr{B} is basically specified by enumeration.

Discrete event phenomena

Words in a natural language

$\mathscr{U}=\mathbb{A}^{*}(:=$ all finite strings with letters from $\mathbb{A})$ with $\mathbb{A}=\{a, \ldots, z, A, \ldots, Z\}$.
$\mathscr{B}=$ all words recognized by the spelling checker, for example, behavior $\in \mathscr{B}, \mathbf{S P Q R} \notin \mathscr{B}$.
\mathscr{B} is basically specified by enumeration.

- Sentences in a natural language
$\mathscr{U}=\mathbb{A}^{*}(:=$ all finite strings with letters from $\mathbb{A})$ with $\mathbb{A}=\left\{a, \ldots, z, A, \ldots, Z,, . ;:{ }^{\prime \prime \prime}-()!?\right.$, etc. $\}$.
$\mathscr{B}=$ all legal sentences.
Specifying \mathscr{B} is a complicated matter, involving grammars.

DNA sequences

$\mathbb{A}=\{A, G, C, T\}, \quad \mathscr{U}=\mathbb{A}^{*}, \mathscr{B}=? ? ?$

IATEXcode

$\mathscr{B}=$ all IAT \mathbf{E}^{X} Xfiles that 'compile'.

Continuous phenomena

If \mathscr{U} is a (subset of) a finite-dimensional real (or complex) vector space, we speak about continuous models.

Examples:

- The gas law

- A spring

The gravitational attraction of two bodies

- A resistor

Continuous phenomena

The gas law

Event: pressure, volume, temperature, quantity of a gas in a vessel.

Benoît Clapeyron 1799-1864
$\mathscr{U}=[0, \infty)^{4} ; \mathscr{B}=\left\{(P, V, T, N) \in[0, \infty)^{4} \mid P V=N T\right\}$.
Occasionally in these lectures, we assume that the units are chosen so that certain constants, as the proportionality constant in this example, are equal to one.

Continuous phenomena

A spring

Event: (force F_{1}, force F_{2}, length L).

$\mathscr{U}=\mathbb{R} \times \mathbb{R} \times[0, \infty) ;$
$\mathscr{B}=\left\{\left(F_{1}, F_{2}, L\right) \in \mathbb{R} \times \mathbb{R} \times[0, \infty) \mid F_{1}=F_{2}, L=\rho\left(F_{1}\right)\right\}$.

Continuous phenomena

The gravitational attraction of two bodies

Occasionally in these lectures, we assume that the units are chosen so that certain constants, as the universal gravitational constant in this example, are equal to one.

Event: (position \vec{q}_{1}, position \vec{q}_{2}, force \vec{F}).

Isaac Newton (1643-1727)

$$
\begin{aligned}
& \mathscr{U}=\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} ; \\
& \mathscr{B}=\left\{\left(\vec{q}_{1}, \vec{q}_{2}, \vec{F}\right) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \left\lvert\, \vec{F}=\frac{M_{1} M_{2} \overrightarrow{\mathrm{1}}_{\left(\vec{q}_{2}-\vec{q}_{1}\right)}}{\left|\vec{q}_{1}-\vec{q}_{2}\right|^{2}}\right.\right\} .
\end{aligned}
$$

Continuous phenomena

A resistor

Event: (voltage V, current I).

Throughout, we take the current positive when it runs into the circuit, and we take the voltage positive when it goes from higher to lower potential.

Georg Ohm (1789-1854)
$\mathscr{U}=\mathbb{R} \times \mathbb{R}$
$\mathscr{B}=\{(V, I) \in \mathbb{R} \times \mathbb{R} \mid V=R I\}$ (Ohm's law)

Dynamical phenomena

If \mathscr{U} is a set of functions of time, we speak about dynamical models.

Examples:

Inductors, capacitors
Kepler's laws
Newton's second law

Dynamical phenomena

$\underline{\text { Inductors and capacitors }}$

Event: voltage and current as a function of time.

$\mathscr{U}=(\mathbb{R} \times \mathbb{R})^{\mathbb{R}} ;$
$\mathscr{B}=\left\{(V, I): \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \left\lvert\, L \frac{d}{d t} I=V\right.\right\}$ (inductor),
$\mathscr{B}=\left\{(V, I): \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R} \left\lvert\, C \frac{d}{d t} V=I\right.\right\}$ (capacitor).

Dynamical phenomena

Kepler's laws

Event: the position of a planet as a function of time.

K1: ellipse, sun in focus,
K2: equal areas in equal times,
K3: square of the period
$=$ third power of major axis
$\mathscr{U}=\left(\mathbb{R}^{3}\right)^{\mathbb{R}} ;$
$\mathscr{B}=\left\{\vec{q}: \mathbb{R} \rightarrow \mathbb{R}^{3} \mid\right.$ K1, K2, \& K3 hold $\}$.

Dynamical phenomena

Newton's second law

Event: the position of a pointmass and the force acting on it, both as a function of time.

$$
\begin{aligned}
& \mathscr{U}=\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)^{\mathbb{R}} ; \\
& \mathscr{B}=\left\{(\vec{q}, \vec{F}): \mathbb{R} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \left\lvert\, \vec{F}=M \frac{d^{2}}{d t^{2}} \vec{q}\right.\right\} .
\end{aligned}
$$

Newton painted by William Blake

Distributed phenomena

If \mathscr{U} is a set of functions of space and time, we speak about distributed parameter systems.

Examples:

- Heat diffusion
- Maxwell's equations

Distributed phenomena

Heat diffusion

Event: temperature and heat flow

 as a function of time and space.

$$
\begin{aligned}
\mathscr{U} & =([0, \infty) \times \mathbb{R})^{\mathbb{R}^{2}} \\
\mathscr{B} & =\left\{(T, Q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R} \left\lvert\, \frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+Q\right.\right\} .
\end{aligned}
$$

Distributed phenomena

Maxwell's equations

Event: electric field, magnetic field, current density, charge density as a function of time and space.

James Clerk Maxwell (1831-1879)

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

$$
\mathscr{U}=\left(\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}\right)^{\mathbb{R}^{4}}
$$

$$
\mathscr{B}=\left\{(\vec{E}, \vec{B}, \vec{j}, \rho): \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}\right.
$$

Maxwell's equations are satisfied \}.

The behavior

Behavioral models

The behavior captures the essence of what a model is.

The behavior is all there is. Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Behavioral models

The behavior captures the essence of what a model is.

> The behavior is all there is. Equivalence of models, properties of models, symmetries, system identification, etc. must all refer to the behavior.

Every 'good' scientific theory is prohibition: it forbids certain things to happen.
The more it forbids, the better it is.

Karl Popper (1902-1994)
Replace 'scientific theory' by 'mathematical model'.

Dynamical systems

The dynamic behavior

In dynamical systems, the 'events' are maps, with the time-axis as domain. The events are functions of time.

The dynamic behavior

In dynamical systems, the 'events' are maps, with the time-axis as domain. The events are functions of time.

It is convenient to distinguish, in the notation, the domain of the event maps, the time set, and the codomain, the signal space, that is, the set where the functions take on their values.

The dynamic behavior

Definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with

$\mathbb{T} \subseteq \mathbb{R}$ the time set,
\mathbb{W} the signal space,
$\mathscr{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior, that is, \mathscr{B} is a family of maps from \mathbb{T} to \mathbb{W}.
$w: \mathbb{T} \rightarrow \mathbb{W} \in \mathscr{B}$ means: the model allows the trajectory w, $w: \mathbb{T} \rightarrow \mathbb{W} \notin \mathscr{B}$ means: the model forbids the trajectory w.

The dynamic behavior

Definition: A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with

- $\mathbb{T} \subseteq \mathbb{R}$ the time set,
- WV the signal space,
$\mathscr{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the behavior, that is, \mathscr{B} is a family of maps from \mathbb{T} to \mathbb{W}.
$w: \mathbb{T} \rightarrow \mathbb{W} \in \mathscr{B}$ means:
$w: \mathbb{T} \rightarrow \mathbb{W} \notin \mathscr{B}$ means:
the model allows the trajectory w,
the model forbids the trajectory w.

Mostly, $\mathbb{T}=\mathbb{R}, \mathbb{R}_{+}:=[0, \infty), \mathbb{Z}$, or $\mathbb{N}:=\{0,1,2, \ldots\}$,
$\mathbb{W}=\left(\right.$ a subset of) \mathbb{R}^{w}, for some $\mathrm{w} \in \mathbb{N}$,
\mathscr{B} is then a family of trajectories taking values in a finite-dimensional real vector space.
$\mathbb{T}=\mathbb{R}$ or $\mathbb{R}_{+} \sim$ 'continuous-time' systems,
$\mathbb{T}=\mathbb{Z}$ or $\mathbb{N} \leadsto$ 'discrete-time' systems.

Dynamical systems described by differential equations

Consider the ODE

with

$$
\begin{equation*}
f\left(w, \frac{d}{d t} w, \frac{d^{2}}{d t^{2}} w, \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w\right)=0 \tag{*}
\end{equation*}
$$

$$
f: \mathbb{W} \times \underbrace{\mathbb{R}^{\mathrm{W}} \times \mathbb{R}^{\mathrm{W}} \times \cdots \times \mathbb{R}^{\mathrm{W}}}_{\mathrm{n} \text { times }} \rightarrow \mathbb{R}^{\bullet}, \quad \mathbb{W} \subseteq \mathbb{R}^{\mathrm{W}}
$$

Some may prefer to write

$$
f \circ\left(w, \frac{d}{d t} w, \frac{d^{2}}{d t^{2}} w, \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w\right)=0
$$

instead of $(*)$, but we leave the \circ notation to puritans.

Dynamical systems described by differential equations

Consider the ODE

with

$$
\begin{equation*}
f\left(w, \frac{d}{d t} w, \frac{d^{2}}{d t^{2}} w, \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w\right)=0 \tag{*}
\end{equation*}
$$

$$
f: \mathbb{W} \times \underbrace{\mathbb{R}^{\mathrm{W}} \times \mathbb{R}^{\mathrm{W}} \times \cdots \times \mathbb{R}^{\mathrm{W}}}_{\mathrm{n} \text { times }} \rightarrow \mathbb{R}^{\bullet}, \quad \mathbb{W} \subseteq \mathbb{R}^{\mathrm{W}} .
$$

This ODE defines the dynamical system $(\mathbb{R}, \mathbb{W}, \mathscr{B})$, with
$\mathscr{B}=\{w: \mathbb{R} \rightarrow \mathbb{W}$, sufficiently smooth \mid

$$
\left.f\left(w(t), \frac{d}{d t} w(t), \frac{d^{2}}{d t^{2}} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t)\right)=0 \quad \forall t \in \mathbb{R}\right\}
$$

'Sufficiently smooth': for example $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{W})$, but other solution concepts may be appropriate ...

Examples

Inductor: $\mathbb{W}=\mathbb{R}^{2}, f:\left(V, I, \frac{d}{d t} V, \frac{d}{d t} I\right) \mapsto V-L \frac{d}{d t} I$.
Capacitor: $\mathbb{W}=\mathbb{R}^{2}, f:\left(V, I, \frac{d}{d t} V, \frac{d}{d t} I\right) \mapsto C \frac{d}{d t} V-I$.
Newton's second law:

$$
\begin{aligned}
& \mathbb{W}=\mathbb{R}^{3} \times \mathbb{R}^{3} \\
& f:\left(\vec{F}, \vec{q}, \frac{d}{d t} \vec{F}, \frac{d}{d t} \vec{q}, \frac{d^{2}}{d t^{2}} \vec{F}, \frac{d^{2}}{d t^{2}} \vec{q}\right) \mapsto \vec{F}-M \frac{d^{2}}{d t^{2}} \vec{q}
\end{aligned}
$$

Properties of dynamical systems

Linearity and time-invariance

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ is said to be
linear $: ~ \Leftrightarrow$
\mathbb{W} is a vector space (over the field \mathbb{F}) and $\llbracket w_{1}, w_{2} \in \mathscr{B}$ and $\alpha \in \mathbb{F} \rrbracket \Rightarrow \llbracket w_{1}+\alpha w_{2} \in \mathscr{B} \rrbracket$.

Linearity \Leftrightarrow the 'superposition principle' holds.

Linearity and time-invariance

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ is said to be
time-invariant $: \Leftrightarrow \mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or \mathbb{N}, and $\llbracket w \in \mathscr{B}$ and $t \in \mathbb{T} \rrbracket \Rightarrow \llbracket \sigma^{t} w \in \mathscr{B} \rrbracket$.
σ^{t} denotes the backwards t-shift, defined as

$$
\sigma^{t} w: \mathbb{T} \rightarrow \mathbb{W}, \quad \sigma^{t} w\left(t^{\prime}\right):=w\left(t^{\prime}+t\right)
$$

Shift-invariance \Leftrightarrow shifts of ‘legal' trajectories are ‘legal'.

Autonomous systems

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}, is said to be

autonomous : \Leftrightarrow

$\llbracket w_{1}, w_{2} \in \mathscr{B}$, and $w_{1}(t)=w_{2}(t)$ for $t<0 \rrbracket \Rightarrow \llbracket w_{1}=w_{2} \rrbracket$.

Autonomous in a picture

autonomous : \Leftrightarrow the past implies the future.

Stability

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R},[0, \infty)$, \mathbb{Z}, or \mathbb{N}, and \mathbb{W} a normed vector space (for simplicity), is said to be stable $: \Leftrightarrow \llbracket w \in \mathscr{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ for $t \rightarrow \infty \rrbracket$.

Stability

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R},[0, \infty)$, \mathbb{Z}, or \mathbb{N}, and \mathbb{W} a normed vector space (for simplicity), is said to be stable $: \Leftrightarrow \llbracket w \in \mathscr{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ for $t \rightarrow \infty \rrbracket$.

In a picture

stability : \Leftrightarrow all trajectories go to 0 .
Sometimes this is referred to as 'asymptotic stability'.

Controllability

The time-invariant (to avoid irrelevant complications) dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}, is said to be

controllable : \Leftrightarrow

for all $w_{1}, w_{2} \in \mathscr{B}$, there exist
$T \in \mathbb{T}, T \geq 0$, and $w \in \mathscr{B}$, such that

$$
w(t)= \begin{cases}w_{1}(t) & \text { for } t<0 \\ w_{2}(t-T) & \text { for } t \geq T\end{cases}
$$

Controllability in a picture

controllability : \Leftrightarrow concatenability of trajectories after a delay

Stabilizability

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$, with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z}, and \mathbb{W} a normed vector space (for simplicity), is said to be stabilizable $: \Leftrightarrow$ for all $w \in \mathscr{B}$, there exist $w^{\prime} \in \mathscr{B}$, such that

$$
w^{\prime}(t)=w(t) \quad \text { for } t<0,
$$

and

$$
w^{\prime}(t) \rightarrow 0 \quad \text { for } t \rightarrow \infty .
$$

Stabilizability in a picture

stabilizability : \Leftrightarrow all trajectories can be steered to 0 .

Observability

Consider the dynamical system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathscr{B}\right)$.
w_{2} is said to be observable from w_{1} in $\Sigma: \Leftrightarrow$

$$
\llbracket\left(w_{1}, w_{2}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in \mathscr{B} \text { and } w_{1}=w_{1}^{\prime} \rrbracket \Rightarrow \llbracket w_{2}=w_{2}^{\prime} \rrbracket .
$$

observability $: \Leftrightarrow w_{2}$ may be deduced from w_{1}.
!!! Knowing the laws of the system !!!

Observability in a picture

Equivalently, there exists a map $F: \mathbb{W}_{1}^{\mathbb{T}} \rightarrow \mathbb{W}_{2}^{\mathbb{T}}$, such that

$$
\llbracket\left(w_{1}, w_{2}\right) \in \mathscr{B} \rrbracket \Rightarrow \llbracket w_{2}=F\left(w_{1}\right) \rrbracket .
$$

Detectability

Consider the dynamical system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathscr{B}\right)$, with $\mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or \mathbb{N}, and \mathbb{W} a normed vector space (for simplicity).
w_{2} is said to be detectable from w_{1} in $\Sigma: \Leftrightarrow$
$\llbracket\left(w_{1}, w_{2}\right),\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \in \mathscr{B}$ and $w_{1}=w_{1}^{\prime} \rrbracket$

$$
\Rightarrow \llbracket w_{2}(t)-w_{2}^{\prime}(t) \rightarrow 0 \quad \text { for } t \rightarrow \infty \rrbracket .
$$

Detectability : $\Leftrightarrow w_{2}$ can be asymptotically deduced from w_{1}.

Examples

All these properties will be discussed in detail for linear time-invariant differential systems.
Resistors, inductors, capacitors, Newton's second law: linear.
All the examples given are time-invariant.
Newton's second law: controllable, hence stabilizable, not stable, \vec{F} observable from \vec{q}, \vec{q} not observable and not detectable from \vec{F}.
Kepler's laws define an autonomous system. So does

$$
\frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=f\left(w, \frac{d}{d t} w, \ldots, \frac{d^{\mathrm{n}-1}}{d t^{\mathrm{n}-1}} w\right) .
$$

In particular, $\frac{d}{d t} x=f(x)$, and $x(t+1)=f(x(t))$.

Representations of behaviors

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}.
There are many ways to specify a subset. For example,
as the set of solutions of equations,
as the image of a map,
as a projection.

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}.
There are many ways to specify a subset. For example,
as the set of solutions of equations:

$$
f: \mathscr{U} \rightarrow \bullet, \quad \mathscr{B}=\{w \in \mathscr{U} \mid f(w)=0\}
$$

as the image of a map:

$$
f: \bullet \rightarrow \mathscr{U}, \quad \mathscr{B}=\{w \in \mathscr{U} \mid \exists \ell \text { such that } w=f(\ell)\},
$$

as a projection:

$$
\begin{gathered}
\mathscr{B}_{\text {extended }} \subseteq \mathscr{U} \times \mathscr{L} \\
\mathscr{B}=\{w \in \mathscr{U} \mid \exists \ell \in \mathscr{L} \text { such that }(w, \ell) \in \mathscr{B} \text { extended }\} .
\end{gathered}
$$

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}.
There are many ways to specify a subset. For example,
as solutions of equations:
kernel representation

$$
f: \mathscr{U} \rightarrow \bullet, \quad \mathscr{B}=\{w \in \mathscr{U} \mid f(w)=0\}
$$

as the image of a map:
image representation

$$
f: \bullet \rightarrow \mathscr{U}, \quad \mathscr{B}=\{w \in \mathscr{U} \mid \exists \ell \text { such that } w=f(\ell)\},
$$

as a projection:
latent variable representation

$$
\mathscr{B}=\left\{w \in \mathscr{U} \mid \exists \ell \in \mathscr{L} \text { such that }(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}
$$

w's 'manifest' variables: the variables the model aims at, ℓ 's 'latent' variables: auxiliary variables.

Kernel

as solutions of equations:

kernel representation

$$
f: \mathscr{U} \rightarrow \bullet, \quad \mathscr{B}=\{w \in \mathscr{U} \mid f(w)=0\} .
$$

Image

as the image of a map:

image representation

$$
f: \bullet \rightarrow \mathscr{U}, \quad \mathscr{B}=\{w \in \mathscr{U} \mid \exists \ell \text { such that } w=f(\ell)\} .
$$

Projection

as a projection:

latent variable representation

$$
\mathscr{B}=\left\{w \in \mathscr{U} \mid \exists \ell \in \mathscr{L} \text { such that }(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}
$$

Latent variable representations

Combining equations with latent variables \sim

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0\}, \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\} .
\end{gathered}
$$

w's 'manifest' variables: the variables the model aims at, ℓ 's 'latent' variables: auxiliary variables.

First principles models usually contain latent variables. See Lecture III.
Latent variables naturally emerge from interconnections.
See Lecture IV.

Latent variable representations

Combining equations with latent variables \leadsto

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0\} \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\} .
\end{gathered}
$$

w's 'manifest' variables: the variables the model aims at, ℓ 's 'latent' variables: auxiliary variables.

First principles models usually contain latent variables. See Lecture III.
Latent variables naturally emerge from interconnections.
See Lecture IV.
FAQ: Does \mathscr{B} inherit the structure of $\mathscr{B}_{\text {extended }}$?

State models

State equations

We now discuss how state models fit in.

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u), \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

with $u: \mathbb{R} \rightarrow \mathbb{U}$ the input, $y: \mathbb{R} \rightarrow \mathbb{Y}$ the output, and $x: \mathbb{R} \rightarrow \mathbb{X}$ the state.

In particular, the linear case, these systems are parametrized by the 4 matrices $(A, B, C, D) \sim$

$$
\frac{d}{d t} x=A x+B u, \quad y=C x+D u, \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right],
$$

with $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}, B \in \mathbb{R}^{\mathrm{n} \times \mathrm{m}}, C \in \mathbb{R}^{\mathrm{p} \times \mathrm{n}}, D \in \mathbb{R}^{\mathrm{p} \times \mathrm{m}}$.
These models have dominated linear system theory since the 1960's.

State equations

We now discuss how state models fit in.

$$
\frac{d}{d t} x=f(x, u), \quad y=h(x, u), \quad w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

with $u: \mathbb{R} \rightarrow \mathbb{U}$ the input, $y: \mathbb{R} \rightarrow \mathbb{Y}$ the output, and $x: \mathbb{R} \rightarrow \mathbb{X}$ the state.

It is common to view state space systems as models to describe the input/output behavior by means of input/state/output equations, with the state as latent variable. Define

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}:=\{(u, y, x): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \times \mathbb{X} \mid(\mathbb{W}) \text { holds }\} \\
\mathscr{B}:=\{(u, y): \mathbb{R} \rightarrow \mathbb{U} \times \mathbb{Y} \mid \exists x: \mathbb{R} \rightarrow \mathbb{X} \text { such that }(\mathbb{N}) \text { holds }\} .
\end{gathered}
$$

State controllability

State models propagated under the influence of R.E. Kalman. Especially important in this development were the notions of state controllability and state observability.

Rudolf Kalman (1930

State controllability

(\$) is said to be state controllable
if for all $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{X}$, there exists $T \geq 0, u: \mathbb{R} \rightarrow \mathbb{U}$, and $x: \mathbb{R} \rightarrow \mathbb{X}$ such that

1. $\frac{d}{d t} x(t)=f(x(t), u(t))$ for $0 \leq t \leq T$,
2. $x(0)=\mathrm{x}_{1}$,
3. $x(T)=\mathrm{x}_{2}$.

State controllability

(\$) is said to be state controllable
if for all $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathbb{X}$, there exists $T \geq 0, u: \mathbb{R} \rightarrow \mathbb{U}$, and $x: \mathbb{R} \rightarrow \mathbb{X}$ such that

1. $\frac{d}{d t} x(t)=f(x(t), u(t))$ for $0 \leq t \leq T$,
2. $x(0)=\mathrm{x}_{1}$,
3. $x(T)=\mathrm{x}_{2}$.

It is easy to prove that «state controllability】
$\Leftrightarrow \llbracket$ behavioral controllability of $\mathscr{B}_{\text {extended }} \rrbracket$. \llbracket state controllability $\rrbracket \Rightarrow$ behavioral controllability of $\mathscr{B} \rrbracket$.

Behavioral controllability makes controllability into a genuine, an intrinsic, system property.

State observability

(D) is said to be state observable if

$$
\llbracket\left(u, y, x_{1}\right),\left(u, y, x_{2}\right) \in \mathscr{B}_{\text {extended }} \rrbracket \Rightarrow \llbracket x_{1}(0)=x_{2}(0) \rrbracket .
$$

State observability

(D) is said to be state observable if

$$
\llbracket\left(u, y, x_{1}\right),\left(u, y, x_{2}\right) \in \mathscr{B}_{\text {extended }} \rrbracket \Rightarrow \llbracket x_{1}(0)=x_{2}(0) \rrbracket .
$$

It is easy to prove that \llbracket state observability $\rrbracket \Leftrightarrow \llbracket$ behavioral observability of $\mathscr{B}_{\text {extended }} \rrbracket$, with (u, y) as 'observed' variables, and x as 'to-be-deduced' variable.

State observability

(D) is said to be state observable if

$$
\llbracket\left(u, y, x_{1}\right),\left(u, y, x_{2}\right) \in \mathscr{B}_{\text {extended }} \rrbracket \Rightarrow \llbracket x_{1}(0)=x_{2}(0) \rrbracket .
$$

It is easy to prove that
\llbracket state observability $\rrbracket \Leftrightarrow \llbracket$ behavioral observability of $\mathscr{B}_{\text {extended }} \rrbracket$, with (u, y) as 'observed' variables, and x as 'to-be-deduced' variable.

Behavioral controllability and observability are meaningful generalizations of state controllability and observability.

Why should we be so interested in the state?

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is said to be a

linear time-invariant differential system (LTIDS) $: \Leftrightarrow$

the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{R}}$ consists of the set of solutions of a system of linear constant-coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $R_{0}, R_{1}, \ldots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$.

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is said to be a
linear time-invariant differential system (LTIDS) $: \Leftrightarrow$
the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{\mathrm{w}}\right)^{\mathbb{R}}$ consists of the set of solutions of a system of linear constant-coefficient ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $R_{0}, R_{1}, \ldots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$. In polynomial matrix notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

with $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$.

Examples

$$
M \frac{d^{2}}{d t^{2}} \vec{q}=\vec{F}, w=\left[\begin{array}{l}
\vec{F} \\
\vec{q}
\end{array}\right], \quad \leadsto R(\xi)=\left[\begin{array}{lll}
I_{3 \times 3} & \vdots & -I_{3 \times 3} \xi^{2}
\end{array}\right] .
$$

Examples

$$
M \frac{d^{2}}{d t^{2}} \vec{q}=\vec{F}, w=\left[\begin{array}{c}
\vec{F} \\
\vec{q}
\end{array}\right], \quad \leadsto R(\xi)=\left[\begin{array}{lll}
I_{3 \times 3} & \vdots & -I_{3 \times 3} \xi^{2}
\end{array}\right] .
$$

$$
\begin{aligned}
& \frac{d}{d t} x=A x+B u, \quad y=C x+D u, \quad w=\left[\begin{array}{l}
u \\
x \\
u: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}}, y: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{m}}, x: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}} .
\end{array}\right], ~ . ~
\end{aligned}
$$

$$
\leadsto R(\xi)=\left[\begin{array}{ccc}
A-I_{\mathrm{n} \times \mathrm{n}} \xi & B & 0 \\
C & D & -I_{\mathrm{p} \times \mathrm{p}}
\end{array}\right]
$$

Examples

$$
M \frac{d^{2}}{d t^{2}} \vec{q}=\vec{F}, w=\left[\begin{array}{l}
\vec{F} \\
\vec{q}
\end{array}\right], \quad \leadsto R(\xi)=\left[\begin{array}{lll}
I_{3 \times 3} & \vdots & -I_{3 \times 3} \xi^{2}
\end{array}\right] .
$$

$$
\leadsto R(\xi)=\left[\begin{array}{ccc}
A-I_{\mathrm{n} \times \mathrm{n}} \xi & B & 0 \\
C & D & -I_{\mathrm{p} \times \mathrm{p}}
\end{array}\right] .
$$

$p_{0}, p_{1}, \ldots, p_{\mathrm{n}} \in \mathbb{R}, w: \mathbb{R} \rightarrow \mathbb{R}$

$$
p_{0} w+p_{1} \frac{d}{d t} w+\cdots+p_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$\leadsto R=p$, with $p(\xi)=p_{0}+p_{1} \xi+\cdots+p_{\mathrm{n}} \xi^{\mathrm{n}}$.

The solution set

We should define what we take to be the solution set. For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions. Hence

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\} .
$$

The solution set

We should define what we take to be the solution set. For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{W}}\right)$ solutions. Hence

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\} .
$$

There are other possibilities.
Strong solutions: w as many times differentiable as derivatives appear in the ODE, and $R\left(\frac{d}{d t}\right) w=0$. Has very few 'invariance' properties.

- Weak solutions : $w \in \mathscr{L}^{\text {local }}\left(\mathbb{R}, \mathbb{R}^{w}\right)$, with $R\left(\frac{d}{d t}\right) w=0$ in the sense of distributions. Includes steps, ramps, etc.
Distributional solutions : w is a distribution, and $R\left(\frac{d}{d t}\right) w=0$ as a distribution.
Includes also impulses, doublets, and such frivolities.
Weak and distributional: very sensible alternatives to \mathscr{C}^{∞} !

Notation

$\mathscr{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$,
$R\left(\frac{d}{d t}\right) w=0$: a kernel representation of \mathscr{B}.
We will meet other representations later.

Notation

$\mathscr{B}=\mathbf{k e r n e l}\left(R\left(\frac{d}{d t}\right)\right)$,
$R\left(\frac{d}{d t}\right) w=0$: a kernel representation of \mathscr{B}.

\mathscr{L}^{w} : the LTIDSs with w variables, $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$,
\mathscr{L}^{\bullet} : the LTIDSs, $\mathscr{B} \in \mathscr{L}^{\bullet}$.

Other sets of independent variables

Discrete-time systems

We have concentrated on continuous-time dynamical systems with time set $\mathbb{T}=\mathbb{R}$. Notions like controllability and stabilizability require appropriate changes for $\mathbb{T}=[0, \infty)$, but the development remains basically the same.

Discrete-time systems with $\mathbb{T}=\mathbb{N}$ are often described by difference equations

$$
f\left(w, \sigma w, \ldots, \sigma^{\mathrm{n}} w\right)=0
$$

leading to the behavior

$$
\mathscr{B}=\{w: \mathbb{Z} \rightarrow \mathbb{W} \mid f(w(t), w(t+1), \ldots, w(t+\mathrm{n})=0 \forall t \in \mathbb{N}\}
$$

In the case $\mathbb{T}=\mathbb{Z}$, it is useful to have negative as well as positive lags, leading to

$$
f\left(\sigma^{\mathrm{n}_{-}} w, \sigma^{\mathrm{n}_{-}+1} w, \ldots, \sigma^{\mathrm{n}_{+}-1} w, \sigma^{\mathrm{n}_{+}}\right) w=0
$$

Systems described by constant-coefficient difference equations

The dynamical system $\left(\mathbb{Z}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is said to be a

linear time-invariant difference system : \Leftrightarrow

the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{W}\right)^{\mathbb{Z}}$ consists of the set of solutions of the system of difference equations

$$
R_{\mathrm{n}_{-}} \sigma^{\mathrm{n}_{-}} w+R_{\mathrm{n}_{-}+1} \sigma^{\mathrm{n}_{-}+1} w+\cdots+R_{\mathrm{n}_{+}} \sigma^{\mathrm{n}_{+}} w=0
$$

with $R_{\mathrm{n}_{-}}, R_{\mathrm{n}_{-}+1}, \ldots, R_{\mathrm{n}_{+}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, $\mathrm{n}_{-} \leq \mathrm{n}_{+} \in \mathbb{Z}$ the minimal and maximal lags, and $w: \mathbb{Z} \rightarrow \mathbb{R}^{w}$.

Systems described by constant-coefficient difference equations

The dynamical system $\left(\mathbb{Z}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is said to be a
linear time-invariant difference system $: \Leftrightarrow$
the behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{w}\right)^{\mathbb{Z}}$ consists of the set of solutions of the system of difference equations

$$
R_{\mathrm{n}_{-}} \sigma^{\mathrm{n}_{-}} w+R_{\mathrm{n}_{-}+1} \sigma^{\mathrm{n}_{-}+1} w+\cdots+R_{\mathrm{n}_{+}} \sigma^{\mathrm{n}_{+}} w=0
$$

In polynomial matrix notation

$$
\begin{gathered}
R\left(\sigma, \sigma^{-1}\right) w=0 \\
R\left(\xi, \xi^{-1}\right)=R_{\mathrm{n}_{-}} \xi^{\mathrm{n}_{-}}+R_{\mathrm{n}_{-}+1} \xi^{\mathrm{n}_{-}+1}+\cdots+R_{\mathrm{n}_{+}} \xi^{\mathrm{n}_{+}} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}} \\
\mathscr{B}=\left\{w: \mathbb{Z} \rightarrow \mathbb{R}^{\mathrm{w}} \mid R\left(\sigma, \sigma^{-1}\right) w=0\right\}
\end{gathered}
$$

MA

Example: The moving average system

$$
w_{1}(t)=\frac{1}{2 N+1} \sum_{t^{\prime}=-N}^{N} w_{2}\left(t+t^{\prime}\right)
$$

Example: The moving average system

$$
\begin{gathered}
w_{1}(t)=\frac{1}{2 N+1} \sum_{t^{\prime}=-N}^{N} w_{2}\left(t+t^{\prime}\right) \\
\leadsto w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right], \text { and } \\
R\left(\xi, \xi^{-1}\right)=\left[1 \quad \vdots-\frac{1}{2 N+1}\left(\xi^{-N}+\cdots+1+\cdots+\xi^{N}\right)\right] .
\end{gathered}
$$

It is undesirable to define system properties in terms of a representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this disadvantage. There is indeed a very nice characterization of discrete-time LTIDSs purely in terms of the behavior.

Completeness

It is undesirable to define system properties in terms of a representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this disadvantage. There is indeed a very nice characterization of discrete-time LTIDSs purely in terms of the behavior.

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ is said to be
\llbracket complete $\rrbracket:\left.\left.\Leftrightarrow \llbracket \llbracket w \in \mathscr{B} \rrbracket \Leftrightarrow \llbracket w\right|_{\left[t_{1}, t_{2}\right]} \in \mathscr{B}\right|_{\left[t_{1}, t_{2}\right]} \forall t_{1}, t_{2} \in \mathbb{T} \rrbracket \rrbracket$.

Completeness

It is undesirable to define system properties in terms of a representation, as we did for LTIDSs.

For the discrete-time case, it is possible to circumvent this disadvantage. There is indeed a very nice characterization of discrete-time LTIDSs purely in terms of the behavior.

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ is said to be
\llbracket complete $\rrbracket:\left.\left.\Leftrightarrow \llbracket \llbracket w \in \mathscr{B} \rrbracket \Leftrightarrow \llbracket w\right|_{\left[t_{1}, t_{2}\right]} \in \mathscr{B}\right|_{\left[t_{1}, t_{2}\right]} \forall t_{1}, t_{2} \in \mathbb{T} \rrbracket \rrbracket$.

Examples: Systems described by differential or difference equations.
Non-examples: $\mathscr{B}=\mathscr{L}_{2}\left(\mathbb{R}: \mathbb{R}^{w}\right), \ell_{2}\left(\mathbb{Z}: \mathbb{R}^{w}\right)$,
or behaviors involving compact support conditions.

An intrinsic definition of LTI difference systems

Theorem

The following conditions are equivalent for $\Sigma=\left(\mathbb{Z}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$.

1. $\exists R \in \mathbb{R}\left[\xi, \xi^{-1}\right]$ such that $\mathscr{B}=\operatorname{kernel}\left(R\left(\sigma, \sigma^{-1}\right)\right)$,
2. Σ is linear, time-invariant, and complete,
3. \mathscr{B} is a linear, shift-invariant, closed (in the topology of pointwise convergence) subspace of $\left(\mathbb{R}^{w}\right)^{\mathbb{Z}}$.

What a 'nice' analogue of this theorem is for differential equations is an open problem.

Distributed systems

The notion of a dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ with $\mathbb{T} \subseteq \mathbb{R}$ can be generalized in a very meaningful way by considering a general set of 'independent' variables for \mathbb{T}.

Distributed systems

The notion of a dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ with $\mathbb{T} \subseteq \mathbb{R}$ can be generalized in a very meaningful way by considering a general set of 'independent' variables for \mathbb{T}.

In particular, it is possible to capture this way distributed parameter systems described by PDEs,

$$
f\left(\cdots, \frac{\partial^{k_{1}} \partial^{k_{2}} \cdots \partial^{k_{\mathrm{m}}}}{\partial^{k_{1}+k_{2}+\cdots+k_{\mathrm{m}}}} w, \cdots\right)=0
$$

This leads to a behavior that consists of maps $w: \mathbb{R}^{n} \rightarrow \mathbb{W}$.
For Maxwell's equations, for example, we have $\mathbb{T}=\mathbb{R}^{4}$, with \mathscr{B} consisting of all maps

$$
(\vec{E}, \vec{B}, \vec{j}, \rho): \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}
$$

that satisfy Maxwell's PDEs.

PDEs

The analogue of LTIDSs are systems described by linear constant-coefficient PDEs. These behavioral equations can be written in terms of matrices of polynomials in many variables.

Assume $\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathbb{W}=\mathbb{R}^{\mathrm{w}}$, then $R \in \mathbb{R}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}\right]^{\bullet \times \mathrm{w}}$ leads to the system of PDEs

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

This defines a system $\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ with

$$
\mathscr{B}=\left\{w: \mathbb{R}^{\mathrm{n}} \rightarrow \mathbb{R}^{\mathrm{w}} \left\lvert\, R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0\right.\right\}
$$

Example: Maxwell's equations (see Exercise I.6).

Locally specified

Dynamical systems described by ODEs, in particular, LTIDSs describe a behavior \mathscr{B} that is 'locally specified', meaning that

$$
\llbracket w \in \mathscr{B} \rrbracket \Leftrightarrow \llbracket w_{[t-\varepsilon, t+\varepsilon]} \in \mathscr{B}_{[t-\varepsilon, t+\varepsilon]} \forall \varepsilon>0 \text { and } t \in \mathbb{R} \rrbracket .
$$

Thus the 'legality' of a trajectory can be verified by checking if it is 'locally' legal.

A similar property holds for systems described by PDEs.
The analogue property for discrete-time systems is completeness.

Recapitulation

Summary

A phenomenon produces 'events', 'outcomes'.
\leadsto the universum of events \mathscr{U}.
A mathematical model specifies a subset \mathscr{B} of \mathscr{U}. \mathscr{B} is the behavior and specifies which events can occur, according to the model.

Summary

A phenomenon produces 'events', 'outcomes'. \leadsto the universum of events \mathscr{U}.

A mathematical model specifies a subset \mathscr{B} of \mathscr{U}. \mathscr{B} is the behavior and specifies which events can occur, according to the model.

In dynamical systems, the events are maps from the time set to the signal space.

Summary

A phenomenon produces 'events', 'outcomes'. \sim the universum of events \mathscr{U}.

A mathematical model specifies a subset \mathscr{B} of \mathscr{U}. \mathscr{B} is the behavior and specifies which events can occur, according to the model.
In dynamical systems, the events are maps from the time set to the signal space.
Controllability, observability, and similar properties can be nicely defined within this setting.

Summary

A phenomenon produces 'events', 'outcomes'. \sim the universum of events \mathscr{U}.
A mathematical model specifies a subset \mathscr{B} of \mathscr{U}. \mathscr{B} is the behavior and specifies which events can occur, according to the model.
In dynamical systems, the events are maps from the time set to the signal space.
Controllability, observability, and similar properties can be nicely defined within this setting.
LTIDSs are described by linear constant-coefficient differential equations. They can be represented in terms of polynomial matrices.

Summary

A phenomenon produces 'events', 'outcomes'. \leadsto the universum of events \mathscr{U}.

A mathematical model specifies a subset \mathscr{B} of \mathscr{U}.
\mathscr{B} is the behavior and specifies which events can occur, according to the model.

In dynamical systems, the events are maps from the time set to the signal space.
Controllability, observability, and similar properties can be nicely defined within this setting.

LTIDSs are described by linear constant-coefficient differential equations. They can be represented in terms of polynomial matrices.
Discrete-time LTIDSs admit an elegant characterization purely in terms of the behavior.

End of Lecture I

